

Schaltungstechnik und, besonders, Konstruktion kommerzieller Emzfänger weichen nicht unerheblich von denen der Kundfunkemplänger ab, Das kann nicht weiter wundernehmen, wenn man die sehr unterschiedliche Autgabenstelfung bei ersteren in Rechnung stellt. Der kommerzielle Emptänger hat auf alle Fälle betriebssicheren Empfang auch über längere Zeitrāume zu gewährleisten. Dabei sind die Empfangsbedingungen giösstenteils ganz anders geartet als beim Rundfunkempfänger. Der kommerzielle Empfänger wird wohl stets an einem Empfangsort betrieben, der praktisch frei von irgendwelchen Störungen durch elektrische Geräte und Anlagen ist. Man kann ihn also viel weiter „ausfahren" als einen Rundfunkempfänger. Sieht man einmal von den atmosphärischen Störungen $a b$, so wird die Empfindlichkeit in erster Linie durch das Rauschen des Gerätes bestimmt, das man also möglichst niedrig zu halten bestrebt ist. Die Selektivität, und zwar sowohl frequenzbenachbarten als in der Frequenz weiter entfernten Sendern gegenüber, muss hohe Werte haben, um auch unter schwierigen Bedingungen Betriebssicherheit zu gewährleisten. Rein konstruktiv ist ausserordentlich stabiler Aufbau, beste Abschirmung und Tropenfestigkeit sowie gute Bedienbarkeit, ferner leichte Ueberwachung und Wartung zu fordern. Da für gewöhnlich der kommerzielle Empfänger an einer günstig ausgewählten Antenne arbeitet, muss die Möglichkeit, den Empfängereingang auf sie abzugleichen, vorgesehen sein.
Ein gutes Beispiel eines modernen Kurzwellensuperhets dieser Art ist der Elfröhren-Empfänger „Schwabenland". Der Frequenzbereich zwischen 1,5 und 25 MHz ist in acht Einzelbereiche unterteilt, von denen der kleinste $1,5 \ldots 2,1 \mathrm{MHz}$, der ğ́össte $17,2 \ldots 25 \mathrm{MHz}$ umfasst, so dass also im ungünstigsten Fall $7,8 \mathrm{MHz}$ auf die Skala entfallen. Die Ablesegenauigkeit beträgt auch dann noch $10 \mathrm{kHz} / \mathrm{mm}$ Skalenweg, reicht also auch für hohe Ansprüche aus. Die Empfindlichkeit für ungedämpfte Telegraphie (A 1) beträgt etwa $0,2 \mu \mathrm{~V}$ für eine Ausgangsspannung von 1 V an $5 \mathrm{k} \Omega$ für kleine Bandbreite und $0,5 \mu \mathrm{~V}$ für grosse Bandbreite. Für Telephonie ist die Empfindlichkeit $1 / 3$ bis $^{1 / 3}$ der obigen Werte. Der innere Empfängerstörpegel beträgt bei den oben angegebenen Empfindlichkeitswerten $0,3 \mathrm{~V}$ am Empfänger-

LORENZ-SCHWABENLAND

ausgang, sofern der hochohmige Antennenanschluss verwendet wird. Die Selektivität ist $1: 1000$ bei $0,1 \ldots 0,5 \%$ Frequenzabstand, ie nach Frequenzbereich, die Bandbreite ist zwischen 200 und 5000 Hz stetig regelbar. Die Wahl einer hohen Zwischenfrequenz ($1,24 \mathrm{MHz}$) sichett eine gute Spiegelfrequenzsicherheit bei den verwendeten 3 Vorkreisen. Sie beträgt für die ungünstigste Frequenz noch mehr als 1:10000, die Durchschlagsfestigkeit gegen die Zwischenfrequenz ist mindestens $1: 100000$. Die Emplindlichkeits- und Irennschärfemessungen beziehen sich auf einen Messsenderausgang von 150Ω.

Am Empfängereingang ist ein Ueberspannungsschutz (Glummlampe Osram 1E 30) angebracht, so dass eine Eingangsspannung bis zu 200 V zulässig ist und der Emptänger auch bei Nachbatschaft eines starken Senders betriebssicher ist. Der Eingang ist wahlweise tür Anschluss einer Antenne-von $100 \ldots 700 \mathrm{~cm}$ Kapazität oder niederohmig, für Anschluss eines Antennenkabels mit 150Ω Wellenwiderstand dimensioniert, Die automatische Lautstärkeregelung, die abschaltbar ist, regelt $1: 10^{\circ}$, bei Handregelung ist der Bereich 1:107. Bei automatischer Regelung kann ausserdem die Störhöhe 1:200 variiett werden. Das Gerāt ist für W/echselstromnetzanschluss ausgelegt, die Leistungsaufnahme beträgt ca. 33 V A bei 220 V .

In der Schaltung des Geräts fällt die sorgfältige Abschirmung aller Stufen gegeneinander und sogar teilweise gegen die Röhren sowie die in allen Kreisen liegenden Sperren auf. Die Heizkreise sind gleichfalls durch Doppeldrosseln und Kondensatoren gegeneinander entkoppelt. Interessant ist ferner die Verwendung nur eines einzigen Röhrentyps, der R V 12 P 2000, in allen Stufen des Gerätes. Das hat den Vorteil, dass man nur einen einzigen Röhrentyp für den Ersatz bereitzuhalten braucht. Die auf zwei Vorstufen folgende Mischröhre arbeitet in additiver Mischschaltung mit Einkopplung der Oszillatorspannung aufs erste Gitter. Durch die Verwendung der zwei Vorstufen und eines Penthodenmischers konnte der Rauschpegel sehr niedrig gehalten werden.
Das Quarzbandfilter zwischen Mischröhre und erster ZF-Röhre hat induktiv abstimmbare Ein- und Ausgangskreise für die Bandbreitenregelung. Auf die drei, untereinander mit Zweikreisbandfiltern gekoppelten ZF-Stufen folgt, transformatorisch angekoppelt, das Diodenpaar für Demodulation und Regelspannungserzeugung und dann eine NF-

Stufe mit HF-Ausgangssieb, Der ZFUeberlagerer ist quarzgesteuert $(1,241$ MHz). Im Netzteil wird ein Trockengleichrichter, eine doppelte Siebkette und ein Stabilisator StV 150,20 für die Stabilisierung der Betriebsspannungen der beiden Oszillatorröhren verwendet, Ein Messfeld gestattet die Messung der Heizspannung, der Anodenspannungen und -ströme und Abstimmanzeige durch Umschaltung. Für Eichzwecke kann die am ZF-Oszillator auftretende ZF-Spannung über kleine Kondensatoren an die Anode der ersten HF-Röhre gegeben werden. Die Spulensätze nebst Trimmern usw, sind in einer Trommelanordnung untergebracht. Durch Drehen der Trommel wird jeweils ein Kontaktsatz gesteuert, der den Kopfhörer kurzschliesst und die Anodenspannungen abschaltet, so dass Krachgerâusche vermieden werden.

Wie das Foto zeigt, sind oben unter einer Klappe die Vortöhren, die Mischröhre und die HF-Oszillatorröhre zugänglich, darunter liegen die beiden Antennenanschlüsse, dann folgen die drei Zwischenfrequenzröhren und unten die NF-Röhre, die beiden als Dioden arbeitenden Röhren und die ZF-Oszillatorröhre. Unten links ist der Netzstecker, daneben der Erdanschluss und die Anschlüsse für 600Ω - bzw. $4 \mathrm{k} \Omega$ Kopfhörer angebracht. Auf der Frontplatte, in der oberen Reihe, ist das umschaltbare Messinstrument mit darunter liegender Nullkorrektur, die Eicheinstellung, die Glimmlampe für Ueberspannungsschutz, die Einstellung für den Antennentrimmer (parallel zum ersten Schwingkreis), die Abstimmskala und der Messschalter mit Rücklauf zu finden. Eine mit dem Bereichsschalter (Knebel rechts unten) gekoppelte Schablone gibt jeweils nur den gerade eingeschalteten Bereich auf der Skala frei und zeigt ausserdem die Bereichnummer (in der Abbildung z. B. 8). Unten links an der Frontplatte befindet sich der Bandbreitenregler und ein Druckknopf ,Eichkontrolle", rechts daneben ein Doppeldrehknopf für Pegel- und Lautstärkeregelung, Dann folgt der Abstimmknopf mit einer Uebersetzung von $1: 25$ auf den Nutzbereich der Skala und endlich der Betriebsartschalter für "Aus", "Telephonie ohne Regelung", "Telephonie mit Regelung", "Telegraphie ohne Regelung" und "Telegraphie mit Regelung". Der rechts angebrachte Knebel für die Bereichsumschaltung zieht bei Betätigung eine Feder auf, die ihrerseits die Trommel in langsame Drehung versetzt.
Die im Empfänger verwendete Penthode R V 12 P 2000 ist eine Zwergröhre,

Pos.	Wert	Pos,		rt	Pos.	Wert	
42	7	55	1	mH	73	100	K
43	5	56	100	K	74	10	K
44	$138 \mathrm{~m}^{\text { }}$ x	57	10	K	75	1	mH
45	5 T	62	13,5	max	84	50	
46	500 K	64	2,5		85	1	M
47	50 T	65	100		86	0,1	*F
48	$0,1 \mu \mathrm{~F}$	66	138	$\max ^{\text {a }}$	87	100	K
49	$0.1 \mu \mathrm{~F}$	67	5	T	89	0,1	$\mu \mathrm{F}$
50	$0,1 \mu \mathrm{~F}$	68	50	T	90	0,1	uF
52	3 K	69	50	K	91	100	K
53	800	70	5	T	92	10	K
54	$0,5 \mathrm{~K}$	72	50	T	93	1	mH

Pos.	Wert	Pos.	Wert	Pos.	Wert	
94	800	112	100 K	130	10	K
100	1 M	113	10 K	132	200	
101	100 K	119	30 K	136	200	K
102	50	120	50	137	50	T
103	$0.1 \mathrm{\mu F}$	121!	$0,1,4 \mathrm{~F}$	138	30	mH
104	50 T	122.	2	139	2	
106	0,1 1 F	124	$0,1 \mu \mathrm{~F}$	142	1	mH
107	800	125	800	143	30	K
108	100 K	126	50 T	144	200	
109	1 mH	127.	1 mH	146	100	K
110	0,1 $\mu \mathrm{F}$	128 j	$0,1 \mu \mathrm{~F}$	148	45	ma
111	40	129	300 K	151	50	

Pos,	Wert		Pos. ${ }^{\text {a }}$	Wert		Pos.	Wert										
151	100	K	165	1	M	179	1	M	193	2	T	210	300		229	5	K
153	50		166	100	K	180	100	K	195 :	10		211	5	K	230	50	T
154	500	K	167	0,1	"F	181	400		198	20		212	500		231	50	T
155	20	T	168	5	T	182	100		199	30		218	1	K	236	100	K
157	100		169	5	T	183	1	${ }_{1} \mathrm{~F}$	201	33		221	12,5	H,320	237	45	$\mu \mathrm{F}$
158	5		170	5	K	185	800		203	100		222	12,5	H,320	238	400	
159 160	5	T	171	2	K	186	1	uF	204	20		223	38	mH	239	500	K
${ }^{160}$	5	$\stackrel{\text { T }}{\text { m }}$	172	103	K	187	50	K	205	70		224	38	mH	240	50	T
161 162	1	${ }_{\mu \mathrm{F}}$	174 175	5	${ }_{T}^{\mathrm{m}}$	190 191	${ }_{2}$	${ }_{\text {H }}^{\text {+ }}$	206	20		225		$\mu \mathrm{F}$	241	50	T
163	50		$177{ }^{-}$	5	T	192	30	mH	208	100	K	227	4	${ }_{\mu}^{\mu F}$			

die bei der kürzesten Welle (12 m) immerhin noch über $100 \mathrm{k} \Omega$ wirksamen Eingangswiderstand hat. Thre Eingangsund Ausgangskapazitäten (max, $3,6 \mathrm{bzw}$. $3,4 \mathrm{pF}$) sind kleiner als bei Rundfunkröhren (etwa die Hälfte), ihre Steilheit beträgt max. $1,7 \mathrm{~mA} / \mathrm{V}$. der Innenwiderstand mindestens $1 \mathrm{M} \Omega$, der äquivalente Gitterrauschwiderstand etwa $4 \mathrm{k} \Omega$ (in der Mischstufe also etwa $16 \ldots 20 \mathrm{k} \Omega(\mathrm{s}$. Foto C. Loreny A. G.

